Active and Passive Immunization Against Staphylococcus aureus Periprosthetic Osteomyelitis in Rats.
نویسندگان
چکیده
BACKGROUND/AIM Staphylococcus aureus infection associated with orthopedic implants cannot always be controlled. We used a knee prosthesis model with implant-related osteomyelitis in rats to explore induction of an effective immune response with active and passive immunization. MATERIALS AND METHODS Fifty-two Sprague-Dawley rats were divided into active (N=28) and passive immunization groups (N=24). A bacterial inoculum of 103 S. aureus MN8 was injected into the tibia and the femur marrow before insertion of a non-constrained knee prosthesis in each rat. The active-immunization group received a synthetic oligosaccharide of polysaccharide poly-N-acetylglucosamine (PNAG), 9G1cNH2 and the passive-immunization group received immunization with immunoglobulin from rabbits infected with S. aureus. RESULTS/CONCLUSION Active immunization against PNAG significantly reduced the consequences of osteomyelitis infection from PNAG-producing intercellular adhesion (ica+) but not ica- S. aureus. Passive immunization resulted in better clinical assessments in animals challenged with either ica+ or ica- S. aureus, suggesting a lack of specificity in this antiserum.
منابع مشابه
Immunization with alpha-toxin toxoid protects the cornea against tissue damage during experimental Staphylococcus aureus keratitis.
Alpha-toxin is a major virulence factor in Staphylococcus aureus keratitis. Active or passive immunization with alpha-toxin toxoid could protect against corneal damage. Results show that either form of immunization did not kill bacteria but did significantly protect against corneal pathology, especially epithelial erosion.
متن کاملProtein antigens increase the protective efficacy of a capsule-based vaccine against Staphylococcus aureus in a rat model of osteomyelitis.
Staphylococcus aureus is an invasive bacterial pathogen, and antibiotic resistance has impeded adequate control of infections caused by this microbe. Moreover, efforts to prevent human infections with single-component S. aureus vaccines have failed. In this study, we evaluated the protective efficacy in rats of vaccines containing both S. aureus capsular polysaccharides (CPs) and proteins. The ...
متن کاملProtection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant.
The importance of the fibrinogen-binding adhesin clumping factor A (ClfA) in the pathogenesis of Staphylococcus aureus septic arthritis was examined in an animal model. The protective effect of active and passive immunization with ClfA also was investigated in S. aureus infection models. The severity of arthritis was markedly reduced in mice challenged intravenously with a clfA mutant, compared...
متن کاملVaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death.
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. Morbidity and mortality due to infections such as sepsis, osteomyelitis, septic arthritis, and invasive endocarditis remain high despite the use of antibiotics. The emergence of antibiotic resistant super bugs mandates that alternative strategies for the prevention and treatment of S. aureus infections are d...
متن کاملVaccination with clumping factor A and fibronectin binding protein A to prevent Staphylococcus aureus infection of an aortic patch in mice.
Staphylococcus aureus is a leading cause of ventricular assist device-related infections. This study evaluated the protective effect against S. aureus infection of active and passive immunization that targeted 3 proteins involved in bacterial attachment to a murine intra-aortic polyurethane patch. Active immunization of mice with a combination of the A domains of clumping factor A (ClfA), fibro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- In vivo
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2017